POD-based error control for reduced-order bicriterial PDE-constrained optimization
نویسندگان
چکیده
In the present paper, a bicriterial optimal control problem governed by an abstract evolution problem and bilateral control constraints is considered. To compute Pareto optimal points and the Pareto front numerically, the (Euclidean) reference point method is applied, where many scalar constrained optimization problems have to be solved. For this reason a reduced-order approach based on proper orthogonal decomposition (POD) is utilized. An a-posteriori error analysis ensures a desired accuracy for the Pareto optimal points and for the Pareto front computed by the POD method. Numerical experiments for evolution problems with convection-diffusion illustrate the efficiency of the presented approach.
منابع مشابه
POD-Based Bicriterial Optimal Control by the Reference Point Method
In the present paper a bicriterial optimal control problem governed by a parabolic partial differential equation (PDE) and bilateral control constraints is considered. For the numerical optimization the reference point method is utilized. The PDE is discretized by a Galerkin approximation utilizing the method of proper orthogonal decomposition (POD). POD is a powerful approach to derive reduced...
متن کاملConstruction of Parametrically-Robust CFD-Based Reduced-Order Models for PDE-Constrained Optimization
A method for simultaneously constructing a reduced-order model and using it as a surrogate model to solve a PDE-constrained optimization problem is introduced. A reducedorder model is built for the parameters corresponding to the initial guess of the optimization problem. Since the resulting reduced-order model can be expected to be accurate only in the vicinity of this point in the parameter s...
متن کاملA-posteriori error estimation of discrete POD models for PDE-constrained optimal control
In this work a-posteriori error estimates for linear-quadratic optimal control problems governed by parabolic equations are considered. Different error estimation techniques for finite element discretizations and model-order reduction are combined to validate suboptimal control solutions from low-order models which are constructed by Galerkin discretization and application of proper orthogonal ...
متن کاملProgressive construction of a parametric reduced-order model for PDE-constrained optimization
An adaptive approach to using reduced-order models as surrogates in PDE-constrained optimization is introduced that breaks the traditional offline-online framework of model order reduction. A sequence of optimization problems constrained by a given Reduced-Order Model (ROM) is defined with the goal of converging to the solution of a given PDE-constrained optimization problem. For each reduced o...
متن کاملA posteriori error control of a state constrained elliptic control problem
We develop an adaptive finite element concept for elliptic optimal control problems with constraints on the state. In order to generate goal–oriented meshes, we extend the Dual Weighted Residual (DWR) concept proposed by Becker and Rannacher [1] for PDE-constrained optimization to the state constrained case. Using the optimality system of the underlying PDE-constrained optimal control problem w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annual Reviews in Control
دوره 44 شماره
صفحات -
تاریخ انتشار 2017